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INTRODUCTION

This report is concerned with the application of the elements of

quantum (wave) mechanics to some special problems in the field of macro-

scopic fluid dynamics (mechanics), often referred to as classical fluid

dynamics. In particular, considerations will be on flow of a viscous

imcompressible fluid around a circular cylinder. The presentation is

divided into three sections: Section 1 constitutes a brief presentation

of the flow of a nonviscous fluid around a circular cylinder. Attention

is called to the fundamental concepts in any frictionless fluid flow such

as velocity potential, stream function and so on. Section 2 presents a

brief discussion of the restrictions imposed upon the stream function by

the number of dimensions of space in which one usually operates (two in

contrast to three), by the differences between stream function in two-

and three-dimensional flows, and by the selection, as in the present

case, of the two-dimensional space representation. The third section

presents in detail the flow past three-dimensional bodies in a viscous

fluid, particularly past a circular cylinder in the symmetrical case.
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1. FLOW AROUND THREE-DIMENSIONAL BODIES--FRICTIONLESS
FLUID FLOW

1. 1. Characteristic Functions of the Flow

The part of fluid flow theory dealing with the characteristic functions

of the non-viscid frictionless fluid flow with no heat conductivity is

usually well understood by most scientists, physicists, engineers, and

chemists and very little remains to be added. It appears desirable to

call attention to a few of the most characteristic laws and functions which

are valid and widely used in the field of frictionless fluid flows. Subse-

quently, these laws and functions are extended to and used in the field

of viscous and heat-conductive fluid flows with possibly small modifications

and adjustments, wherever they may become necessary. The most

significant laws, rules and functions in the frictionless fluid flows are:

a. conservation of mass (or the continuity equation);

b. conservation of momentum;

c. irrotationality;

d. velocity potential;

e. relation between the irrotationality and the existence

of the potential function;

f. conservation of energy.

The stream function requires a different definition for two-dimensional

flows and a different one for three-dimensional flows. A streamline,

however, is defined in the same manner for either two- or three-dimensional

flow; viz. , a continuous line through the fluid such that it has the direction

of the velocity at every point throughout its length. The differential

equation for a streamline in three-dimensional flow is:

dx/u = dy/v = dz/w; (1. 1. 1)

whereas in two-dimensional flow the form is:

dx/u = dy/v. (1.1. )

In two-dimensional flow the concept of the stream function, i =4 (x,y), gives

u = -ap/ay; v = al/ax; 8u/ay = av/x; (1.1.3)

PRECEDcING PAGE BLANK NOT FILME
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and finally for the irrotational flow case:

aq /ax + 8/ay =v = 0, (1.1.4)

where the symbol v2 denotes the Laplace operator (Laplacian).

2. SOME CHARACTERISTIC FUNCTIONS FOR TWO- AND THREE-
DIMENSIONAL FLOWS

2. 1. Stream Function in Two-Dimensional Flow

The stream function requires a different definition for two-

dimensional flow from that for three-dimensional flow. One of the most

useful definitions of the two-dimensional stream functions is that the

partial derivative of the stream function with respect to any direction is

the velocity component plus 90 degrees (counterclockwise) to the direction

of flow. (Streeter, p. 39). In addition it must satisfy the continuity equation.

The first part of Equation (1. 1.3), i. e. , u = .. . , v = ... , is true whether

the flow has rotation or not. For irrotational flow, however, the second

part of Equation (1. 1. 3) and Equation (1. 1. 4) are true. In particular,

Equation (1. 1. 4) shows that the stream function may be constructed as

the velocity potential for some other flow (Streeter, p. 39). Relations

between stream function, L5, and velocity potential, 4, are found by

equating the expressions for the velocity components:

a4/ax = a/ay; 84/ay = -a8i/ax. (2. 1. 1)

2. 2. Stream Function in Three-Dimensional Flow

Again, all of the details of three-dimensional flow will not be

presented, only those which may be pertinent to the specific problem of

the present report. The calculation of the stream function in three-

dimensional flow requires much more effort and energy than that for the

two-dimensional case. Of special interest and value is the Stokes'

stream function defined only for those three-dimensional flow cases which

have axial symmetry.

The above discussion demonstrates clearly the advantages of using

the two-dimensional flow representation over three-dimensional flow

representation, even in the cases where the actual flow in the physical

space is geometrically expressed as a space phenomenon. The following

representation of the flow phenomena in the viscous, incompressible
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fluid in a three-dimensional space configuration will only use those

analytical methods which give the mathematical description in terms of

two independent variables.

3. FLOW PAST THREE-DIMENSIONAL BODIES IN VISCOUS

INCOMPRESSIBLE FLUID

3. 1. Flow Past a Circular Cylinder--Symmetrical Case

Flows past three-dimensional symmetrical bodies, in particular

flow past a circular cylinder in a symmetrical configuration, will be the

first case to be considered. The flow in the boundary layer past a

circular cylinder in the symmetrical case is known from the literature,

and the solution functions used here are taken from Schlichting, pp. 150-152.

The free stream velocity Uc is parallel to x-axis, and one begins with the

ideal velocity distribution in "potential" irrotational flow past a circular

cylinder of radius R and free stream velocity U.. In general, when one

considers the flow past a cylinder in the symmetrical case, one may use

the so-called Blasius series. According to Blasius, the potential flow

is given by the series:

U(x) = + u3x3 + u5x5 + u7x7 + u9x9 + u 1 1 x +...; (3. 1. 1)

where the coefficients u 2 , u 3 , ... , depend only upon the shape of the body

and are to be considered known. The pressure term in the boundary layer

can be easily calculated for the stationary condition and becomes:

- p- 1 dp/dx = U dU/dx; p = constant; (3.1, 2)

2 3 5 2
U dU/dx = u x + 4 ulu 3  +x 5 (6 ulu 5 + 3 u 3 )

+ x7 (8 ul 7 + 8 u 3 u 5 ) + x 9 (10 U 9 + 10 u 3 u 7 + 5 u 5

+ x11 (12 uu 11 + 12 u 3 u 9 + 13 u 5 u 7 ) + ... ; (3.1.3)

where the continuity equation is integrated with the use of the stream

function 4 = (x,y). A suitable assumption for the coefficients of the

stream function and hence for the velocity components remains to be

made. For the general case, Blasius proposed the form for P(x,y), u

and v with the standard boundary condition (y = 0, u = v = 0, y = r,
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u= Ua.

The case treated in this work refers to the boundary layer on a

cylindrical body placed in a stream which is perpendicular to its axis

(this axis will be denoted as the z-axis, perpendicular to the plane (x,y)

in which the flow actually takes place). Thus the flow is considered to

be two-dimensional in the (x,y) plane. In either case the velocity of the

potential flow is assumed to have the form of a power series in x, where

"x" denotes the distance from the stagnation point measured along the

contour of the cylinder. In the Blasius series, the velocity profile in

the boundary layer is also represented as a power-series in x, with the

coefficients assumed to be functions of the coordinate y, measured at

right angles to the wall; i. e., to the surface of the cylinder.

The form is:

U(x) = 2 UC sin = 2 Uc sin (x R1), (3.1.4)

and by expanding in a power series it becomes:

-1 1 -1 3 1 -1 5
U(x) = 2 U [ (xR )  (x R ) + (x R

1 (x R-1)7 + ]; (3. 1.5)

the stream function with q = y R-1 (2 U -R -1 1/2 is:

= (vul 1/2 {ulx fl( ) + 4 u3x3 f3() + 6 u5x5 f5 (

+ 8 u 7 7 f7() + 10 u9x
9 f9 (1) + 12 ulx

11 f1 1 (i) +

(3.1.6)

the functions u are:
n

1 (U2 -3 2 -5
u = (UR ; u5  UR ... ; (3. 1.7)

-1
and the velocity u U 1 is given by:

-1 -1 4 -13 6 -15
uU= 2 (xR ) f'1 ) (xR) f'3 +  ) (xR) f'5

78 ( ) xR-17 f + . . (3.1.8)

where the functions f' are called the functional coefficients.
n
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In order to render the functional coefficients independent of the

particular properties of the profile, i. e. , of u l , u 3 , ... , it is necessary

to split them as follows ( for i > 5):

f'5 = g' 5 + (10/3) h' 5 ; (3.1. 9)

f7 = g' 7 + 7 h' 7 + (70/3) k' 7 ; (3.1. 10)

9 = g' 9 + 12 h' 9 + (126/5) k' 9 + 84 j' 9 + 280 q'9; (3. 1. 11)

f'll = g'll + (155/3) h'll + 66 k'll + 220 j' 1 + 462 qll " ; (3. 1. 12)

where all the functions shown are tabulated in Schlichting's work. The

usefulness of the Blasius' method is restricted by the fact that it should

not be used for slender bodies. Other attempts on the problem have been

made by Goldstein, Hiemanz, Goertler and others. For a circular

cylinder of diameter d = 9. 74 cm in a stream of velocity u = 19 cm sec - ,

Re = u d v = 1.85 x 10 , Hiemanz found that his experiment gave values

for u which could be represented sufficiently accurately by three terms

of the series for the potential flow. Due to the fact that the function f ( 1 )

are tabulated in Schlichting's work, this research will use the Schlichting

data throughout the report (see Schlichting, p. 152 to p. 154 after remodeling).

3. 2. Forms Used in the Analysis

Stream function

1/24 1 3

S(2 u U R) /2 {(R-x)f l() (R- x)3 f 3 (r)

6 -1 5 8 -17 10 1 9
(R- x) f 5 (rj) - (R x) f 7 (r) +-0- (R- x) f

12 (R- x) 1 1 () + . . } . (3. 2. 1)

Velocity Components (Schlichting Data)

The velocity components are derived from the stream function:

u = (8 /y) = (8/8r) * (21/2 U/ Z R /2- 1/Z)
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4 -13 6 -15
= 2 U {(xR - )f 1(r) - (xR f + (x R- V (p)

8 (x R- 1 7 + (x R- 1 9 (
7 99

S (x R- 11 + (3. 2. 2)

Similarly, the velocity component v is:

v= - aq/x ; (3. 2. 3)

v =- (2 v UR)1/2 {R- f1( ) - R- 3 x 2 f3(

+ R- 5 x 4 f5 () - R 7 X f)7(l) + L R- 9x8

12 R- 11 10  ) + . } = (2 U R -1 )1/2 .

(3. 2. 4)

In Schlichting's work one can find another form for the function v, (p. 149,

Equation(9. 20a))which, after inserting the corresponding values for the

coefficients un, is in perfect agreement with Equation (3. 2.4).

Final Forms of the Vorticity Component

8v/x = - (2 v U. R) 1 / 2 R- 2 {- (xR 1) f3

,120, -1 3 36 -1 )5
+ (.) 0 )(xR- 3 5( ) - (6,) (xR- f(

720. i)7 1320 • 1)9
+ (-. ) (x R- 7 fg9 () - ( )(xR- 1 f 1 1 (I) +

(3. 2.5)

(au/8y) = 2 U (2 R- 1 Um - 11/2 { (x R- ) f'1)

(xR- 1 3 (r) + ( ) (x R)

8 -1 7 10 -19
-) (x R () + ( R) (x R- ()

12 - 11 f 1  ) + . } (3. 2. 6)
) (x R fi 118
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The function w in the form
z

1 -1 (3.2.7)
S=- [( 0 v/ax) - au/8y)], = sec ,

will be superimposed upon each curve u Uc0 - to illustrate the perturbed

velocity distribution in the laminar boundary layer on a circular cylinder

at the following set of angles:

= 00; =200; =400; =600; = 800; = 900; = 1000; = 1100. (3. 2. 8)

where c = (x R -1

4. PERTURBATIONS

4. 1. Stream Function

Thus, there have been derived the equations for the stream function,

S= %(x,I) = 4i(x,.T (y)), and the equations for the velocity components,

(u,v), in the specific flow in question, i.e. , the symmetrical case of

the flow past a circular cylinder (Blasius series). From the definition

of the stream function one can derive the equation of the streamlines.

Since, the stream function satisfies the equation of continuity, the curves,

t5 = constant, represent streamlines (Owczarek, p. 63). The research

begins with the stream function (see Equations (3.2. 1) and (3.2.4) above):

1/2 -l 4 -13
= (2 v U, R) {(R x)f()f (- (R x) f3 (r )6 - 5 8 - )7 !0

+ 6( f5 -71 (R- x) 7 -+ (R -x) 9 f (T

_ 1 (R- x) 1 l11 (  + . } = constant. (4.1.1)

Put in this form, the function j is a function of two variables, (x, r), or

(x,), x = x R - 1 (dimensionless), or (x,y), since q = constant y, where

the constant is a dimensional number. Thus, both the coordinates

(x,ri) appearing in the representation of the function 4, Equation (4. 1. 1)
1/2

are dimensionless, and only the coefficient (2 v U R) standing in
2 -1front of { ... has the dimensions of cm sec as it should be. The

part of the stream function in the braces, { . .. ) , must be kept constant

in order that the stream function be constant (condition for the streamlines).

In other words, the condition for streamlines appears in the form:
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4 136 =1x3x)5 f
(R -x) f ( (R x) ) + (R x) f 5 ()

8 (R-1 )7
, (R1x) 7 () + .. = constant; (4. 1.2)

and one may group the above terms in the following manner:

-1) 16 (R-1x)5 15
S(R ) fl (R 7 )) 7

[ ()] (R x)3 f3()] + (Rx)' 11 f()]

8[ ,R-I )7 f7 (ij)] + [! -. (R-l )9 fg ()] -[12 (R )11

= constant = C. (4. 1. 3)

Obviously, there are infinitely many possibilities for dividing the constant

appearing on the right hand side of Equation (4. 1. 3) among the infinitely

many terms of the series appearing on the left hand side of the same

equation. For illustrative purposes, the following scheme is proposed:

the constant C is divided into "m" equal parts, where "m" is equal to

the number of terms on the left hand side of (4.1.3); each term is assumed

to be equal to Cm ; and (R ) :

f -1
x fl( ) = Cm ;

4 3 -1
(x) f3(T) Cm

)5 5() = C m-1 (4. 1.4)

8 - -1- ()5 f (7) Cm
7- - () 7 f 7 () -Cm

10 9 -1-97. (X) fg( ) = Cm ;

and so on

although there may be other alternatives, one of the conclusions of the

system of equations, (4. 1. 4), is that, in the first form of (4. 1. 4), both

the variables, (x,rT), or any logical combination of these variables such

as the product or the ratio are assumed to be constant. Again from the

many possible combinations, which may and probably do occur in the

actual, physical conditions, the following combination are selected for
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purely illustrative purposes:

x = constant = C A ,  
(4. 1. 5)

[ ()nl] = constant; 1 = y R -1(2 UmRi 1 1/2 (4. 1.6)

The first possibility, Equation (4. 1. 5), will be discussed in more detail.

As can be seen from Equation (4. 1. 5) this is an equation of a hyperbola.

Consequently, in the case under consideration, the simplest possible

geometrical form of a streamline in the (x,y) space is a hyperbola,

Equation (4. 1. 5).

4. 2. Elementary Geometrical Characteristics of the Hyperbola

The geometrical characteristic of hyperbola are collected and presented

in orcter to use them in the present work, thus eliminating the need for

outside references. The standard form of a hyperbola is:

2 -2 2 -2 (4. . )
x a -y b =; (4.2.1)

where the axis, x, intersects the hyperbola at the vertices A and A ;

the segment Al .- A2 is the transverse axis; both branches of hyperbola

are symmetrical with respect to (A 1 AZ), one part being below and another

above the axis; the y axis does not intersect the hyperbola since the center

of the coordinates (x,y) is located in the center between Al and A 2 .

From Equation (4. 2. 1), if a = b, the hyperbola is equilateral, and if the

asymptotes are perpendicular to each other, the hyperbola is "rectangular."

The equation of a rectangular hyperbola in which its asymptotes are

referred to as coordinate axes is:

x 1 =, (4. 2. 2)

2 2
a =b =A ,

and is located in the first and third quandrants. For such a hyperbola
12 12

one has x y = a (first and third quadrants), = a (second and

fourth quandrants);

semi-axes: a = b = (2A)1/2 ; (4. 2. 3)

c 2 4A; c =ZAl/2; (4.2.4)
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coordinates of foci: (-ZA / , 0) (2A1/2, 0); (4. 2. 5)

coordinates of vertices: [(-2A)1/2 , 0] ; [(2A)1/2, 0] ; (4. 2. 6)

eccentricity: e = c a-1 = 1/2 ; (4. 2.7)

distance of the center to directrix: a e-1 = A ; (4. 2. 8)

equation of directrices: x = A1/2, or x = -A1/2 ; (4.2.9)

equation of the asymptotes: x - y = 0, x + y = 0; or x = y, x = -y (4. 2.10)

Consequently, equation (4. 1.5) is the equation of a rectangular hyperbola

in which its asymptotes are referred to as dimensionless coordinate

axes (R-Ix, -) or (x, i). This coordinate system will be used as the

basic coordinate system in further considerations, discussions and

plotting of the diagrams.

4. 3. Computer Plots

The plots, included in the present report refer to a solution of the

steady-state boundary layer equation in the flow past a circular cylinder

in the symmetrical case (Blasius series). In particular the plots refer
-1

to the horizontal velocity component in the case given by u U_1 as quoted

previously:

-1 4 -3
u U = 2 {x f'1 ) = (x)3 f,3 (r) + .} (4.3. 1)

-1
The plots of the function of u U 1 as a function of two variables are given

-1
in the Schlichting book (p. 153) where the function u U,~ is a function of

y R1 (U R = ( 1/2 21/) and of = xR1, with 4 being treated as a

parameter in the range of = 00 , 200, 400, 600, 800, 900, 1000, 108. 80.

Similar plots have been accomplished from this research which are done

automatically in their entirety from the output plotter as part of the

CDC 650 Computer System. These plots are functions of the independent

variable T] varying from r~ = 0 up to 9 = 4. 0, and for the values of the

parameter c, c = x R I

= 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100

Since this effort deals with the problem of the flow in a viscous
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fluid (viscosity is defined as a transverse transfer of momentum) any

possibility of obtaining a purely theoretical laminar flow around a

cylinder is automatically excluded. One can only talk about a quasi-

linear flow or a flow with small disturbances due to small viscosity

pheomena. In order to make the disturbances due to viscosity visibly

more observable, the concept of disturbance in the form of the vorticity

function, wt, containing (8v/8x), and (8u/8y), has been introduced which
z -1

is then superimposed upon the velocity function, u U, . This is done

geometrically, by means of plotting the diagrams of (u U I ) as the

function of 1 in the two-dimensional Cartesian coordinate system,

(u U.1) and q = y R- (2 U R-1 1/2, with =x = (x R1) being a

parameter, and R being a fixed constant. Moreover, the function wz

is also plotted in the same diagram and in the same coordinate system

as a function of rI. Under the assumption that one is dealing with the

linear Schroedinger equation as the basic equation, the principle of

superposition can be applied and the values of the two functions u U l

and wz , and be added geometrically for each value of the independent

variable, r~. The final operation can then be performed for obtaining

the sum of functions. This technique has been applied and the resulting

plots are included as Appendix A of the report. It is not essentialwhich

coordinates in all of the systems discussed be chosen: (x,y) or (x,y),

(x, j), (x, T), since obviously the coordinates x and x, y and 'i differ

only by constants, one being dimensional and the other dimensionless,

respectively. In conclusion, one may summarize the results obtained

as follows:

(a) the stream function of the flow around a circular cylinder,

located symmetrically, is given by Equation (4. 1. 1);

(b) the velocity component u is given by Equation (3. 2. 2);

(c) the velocity component v is given by Equation (3. 2. 4);

(d) the disturbance function (in form of the curl of velocity) is

given by Equations (3. 2. 5), (3. 2. 6), and (3. 2. 7); this is

(geometrically) superimposed upon the velocity component
-1

function u U-

(e) the condition for the streamlines is given by Equation (4. 1. 3);

(f) the simplest possible geometrical form of a streamline in

the (x,y) or (x, q) space is the hyperbola (xq) = CA;
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(g) consequently, the result of the case of flow around a circular

cylinder is exactly the same as in the previous case of the

laminar flow along an infinitely long plate. A finite but very

small amount of vorticity introduced into the flow system

causes the appearance of small disturbances. These disturbances

originate at each finite element and spread in the fluid for short

distances. In the case of the flat plate the streamlines were

parabolas whereas in the present case they are hyperbolas

as proven in Equation (4. 1. 5).

As in the case of a flat plate, one assumes a moving coordinate

system (x,y) or rather [ (x R-l),q] along each of the curves given as the

sum of [(u U ) + Wz ] , from Equation (3. 2. 2), plus Equation (3. 2. 7) with

Equations (3. 2. 5) and (3. 2. 6), supplying a series of values of the para-

meter xR- 1 = = 00, 200, ... , 1100. Each chosen point for a certain

value of i is assumed to be the vertex of the rectangular hyperbola.

The moving coordinate system moves parallel to itself and to the fixed

coordinate system, [ (xR-1), vertical axis] . The branches of the hyperbola

are located in the first and third guadrants. From both coordinate axes,

the horizontal axis (R - 1 x) is always horizontal and the other axis is

always vertical. By means of the proper transformation (of coordinates

if necessary) the branch of hyperbola located in the third quadrant is

being shifted along the transverse axis (A 1 - A 2 ) so that both vertexes

A1 and A 2 coincide at the vertex of the branch of the hyperbola located

in the first quadrant. Consequently, the first quadrant branch of hyperbola

is oriented from up-down and to the right; the third quadrant branch of

hyperbola is oriented from down-up and to the left; both branches meet

at their vertexes (A at the same point as A2 ) and both vertexes coincide

with the point chosen on the curve [ (u U ) + wz]. The two branched hyperbolas
-1

in question are traced at a number of points along the curves [ (u UM ) + Wz]

and their points of intersections are located. The sections of streamlines

(hyperbolas) between two found points of intersection furnish the zig-zag

pattern of the path of a particle. This produces the resulting pattern of

disturbances in the flow around a circular cylinder caused by the injection

of the vorticity geometry into the regular pattern. These zig-zag patterns

are traced in a few cases. The data used in the computer plots are the same

referred to previously:
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-1 -1
Ua, = 200 km hour = 5555. 55 cm sec ;

2 -1
v = 0. 149 cm sec .

4. 4. The Plots

The first set of plots .refers to the flow around a circular cylinder
-1

in the symmetrical case. The velocity distribution, (u U_ ), is taken

as a function of (x R - 1) for various values of the coordinate 1, considered

to be a parameter. The value of q for 20 values is taken to be ( -

yR " I (ZURv ) 1/ 2

S=.0. 2, 0.4, 0. 6, ... ,...., 3. 8 = 4. 0; (4.4.1)

In this approach no disturbances are superimposed upon the flow. The

20 plots included at the end of the present report are based on the values
-1

of the function of (u U 1) as taken from Equation (3. 1. 8) or (4. 3. 1).

For a certain number of points of these functions the streamlines are

plotted as double-branched hyperbolas, and the points of intersections

of these hyperbolas are found; the sections of streamlines between the

points of intersection are interconnected thereby displaying the zig-zag

pattern as the path of a particle. The results show that the zig-zag

pattern, which indicates the existence of some disturbances in the boundary

layer, appears even in the flow without the introduction of any outside

disturbance such as vorticity. This can be expected in this kind of flow.

It seems desirable to point out that one may question the accuracy and

the precision of the graphical results and of the plots in the neighborhood

of x R-1 equal to 2. 0. This may be partly justified since it must be kept

in mind that: (a) the present calculations were done primarily for

illustrative purposes, and for providing general conclusions giving

insight into the particular points and pecularities of the problem needing
-1

more emphasis, and (b) the point in question (R - x = 2) lies outside the

region of the separation of the flow and consequently the characteristic

properties of the flow at this particular point cannot be measured with

precision.
-1

The second set of plots is based on the curve u U. 1 plus a disturbance

with resultant curve:

u U+ = resultant curve; (4. 4. 2)
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on each curve (u U 1 ) taken from the first set of plots there is super-

imposed the disturbance curve in the form of wz as the function of 9.

Each graph therefore clearly shows two curves: one describing the value

of u U. 1 as the function of ii and the second curve describing the vorticity

function, w , again as the function of r1. The vertical coordinates on

these two curves are geometrically added giving the resultant curve,

Equation (4. 4. 2). Again at a certain number of points on this curve,

the two-branched hyperbolas are plotted and the points of intersections

of the streamlines (i. e. , of hyperbolas) are located. The zig-zag

patterns of the paths of particles are traced thus giving the final results.

The third set of plots refers to the velocity vd (dimensionless) =

v U-1, Equation (3. 2. 4), which is subject to disturbances in the form of

the vorticity, toz , i.e.:

vd = v U;-1 v from Equation (3. 2. 4); vd + Wz = resultant function

(4.4.3)

Again, at a certain number of points of the curve (vd + Wz) two-branched

hyperbolas are plotted, the points of intersections of the streamlines

(i. e. , of hyperbolas) are located, and the zig-zag patterns of the paths

of particles are traced, thus giving the final pattern.

All the plots described above and included in this report demonstrate

the existence of the zig-zag patterns in the flow in question, regardless

of whether the flow is laminar, irrotational, rotational, or there is or

is not a vorticity function geometrically superimposed upon the velocity

functions of u and v components. The existence of the zig-zag pattern

is proof that the flow is not laminar, the particle paths are not parallel

(nor quasi-parallel) lines. This is an obvious indication that there are

disturbances in the particular flow in question due to the shape (circular)

of the body around which the flow takes place. The laminar flow along a

flat plate demonstrates the zig-zag pattern. There does not exist a

laminar flow in a domain of a viscous, heat-conducting fluid flow (above

the X-transition point). This conclusion, which is in accordance with

Heisenberg's statement, has been discussed in previous reports. The justi-

fication for the use of summation law, association between the wave mechanics

and deterministic macroscopic fluid dynamics, and all the other aspects are

also explained in previous reports.
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5. FINAL REMARKS

A comparison of the geometry of the flow patterns of the laminar

flow past a symmetrically located cylinder (Schlichting, pp. 146-155) and

those in Technical Report No. 3 indicates a few important results:

(1) The so-called "laminar" flow around a cylinder (symmetri-

cal case or not) is not a laminar but is a flow with disturbances;

(2) Disturbances are always present in the so-called "laminar"

flow due to the transverse transfer of momentum (viscosity);

(3) The zig-zag paths appear always in the so-called "laminar"

flow, however small they may be since streamlines are

always there;

(4) The "streamlines" in the "laminar" flow are actually the

mean value paths of the real zig-zag paths of the particles;

due to the fact that zig-zag paths are small (small amplitudes)

and due to the physiological aspects they are seen by the

naked human eye as continuous lines (the streamlines);

(5) The above traced zig-zag paths seem to be very "regular"

whereas the oscillograms obtained from the oscillographs

placed in a turbulent jet (see Technical Reports No. 1 and 2)

demonstrate that often the realistic zig-zag paths are

irregular; a certain regularity in zig-zag paths may or may

not appear in the "periodic" sense. This demonstrates that

"local' irregularities (jumps, sharp steep "mountains",

sharp, steep "valleys") have their origins and are due to

other reasons and phenomena not yet discussed (interference,

inter -correlation);

(6) When the zig-zag paths are very "even", regular and of small

amplitudes, a zig-zag path may be seen by the naked human

eye as one thick "streamline", as one thick ray; a light, a

ray of light, which is also a wave;

(7) The problem of interference and inter-correlation is discussed

in Technical Report No. 1.
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The First Set of Plots

The function (u U ) as the function of (x R ) for various

values of the parameter r = 0. 2, 0.4, ... , 4. 0.

No disturbances.
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The Second Set of Plots

The function (u U 1 + w ) as the function of (x R1 ) for various values
-1

of the parameter - = 0. 2, 0. 4, .. , 4. 0. The function u U is

dimensionless, the function w = sec1. Curl represents the dis-
z-1

turbances superimposed upon the function u U, . Since the dimensionless

velocity and the disturbance have different dimensions, one has to assume

that the plots are performed in time-frozen conditions.

PRECEDING PAGE BLANK NOT FILMED

47



32.0

31.0

30.0

29.0
/ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 KE

2b.0
2.0 1 DISTURBAN(~ - .b6M = .251N

1 X/R 7- .ICM 3.jiN
2 .024.0 1 UNIT HIPERBOLA . LICM .1IIN
23.0 ETA- 0.2

22.0

21.0

20.0

19. i.0

.3

17.0

16.0

.13.0

12.0

1.1 0

10.G

1.0

1.3 0

2.0

L.O

--- 7

L b I.L 2.

Sh 1RECEDNG PAGE BA NOT FI

49



30.0

VELOCCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 tY

4 2.0.

25.0 1 DISTUPSANCE .bil - .:iIN

4.0
1 X/, -B.qCA = 3,5IN
I UNIT FWFiPEPSLA bl.CM = LblN

23.0 ETA Q0.

21.0

20.0

18.0

b.0

I5.0

13.0

12.0

11.0

b.0

-1.0

-3.0

1.0

50.0

50



32.0

30.0

29.0
,~, ELOCITY DISTRRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 KE
2b.60

1 DISTURBANCE = .. 0 - .a 2IN
I X/R .- h.~11 = .5IN

2,0d 1 UNIT P ERBCLA - 411 - .1IN
23.0 ETA- O.

22.0,

21.0

20.0
ir

1.0

,.0

!.0

[3.0

2.0

11.0

5.0

.L1 ,0

.[3,0

9.0 -

U -,

51



3"2.0

31.0

30.0

29.0
28.0 ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
27.0 I
21.0

2i,0I DI1STURiANC -L r.1 Z-IN
I X/Rf -- EilM -c 111N

2 -4. I1 UNIT hYPERBOLA UICM .LIN

23.0 ETA- ,

22.5

21.0

20.0

17.0

1b.0

14.0

13.0

12.0

.4 .0
.10.6

6,i 1

c1.0

52



300

ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 KEY

26.0

2-.0 I DISTURBANCE .-;CMi 2IlN
1 X/R = i.L1 -. 'IN

2 . 1 _ I UNIT -IYPER 1BA UICM - .. .iN

,23. 0 ETA- I..0

22.0

21.0

20.0

lb. C

17.0

Ib.0

15.0

.13.0

12.0

11.0

.0.0

1.0

3.0

2.0

1.0

,"u PEPARLD BY S KANYA AND D. WI ENGA X/

53



30.0

29.T

2 ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYINDER

27.0 KEY

. 1 I DISTURANCL -. L4 i .25jIN
I X/R -. r11 nIlN

2- .~I UNT HYPERBOLA - .L1CM .IbiN
23.0 E.TA-. 1.2

22.0

21.0

.L9.

17.0

oi.o
IL.i..

73.0

2.0

10.

7.0

... 1.- .0 L . . ... . i .3 .

-1 _~ ~rLPARP.) S KANY.A AND 0. WIF~RNGA \/LN

54



3 2.

300

217 ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 __ .

2k. j

2.10 I DISTURBANCE ,l bb4. .2IN
1 X/P. I.u - l -3.51N

2H.G I UNIT !#PER LA u .ICM .IiN
23.0 - ETA' 1L,U

22.0

21.0

20.0

19.0

17.0
lb 3

15.0

.13.0

12. C

10. 0

7.0

LO

3.0

2.0-

.1.

0.0.

2. 0 3.0 0, 0,3 o9 .6 0. 1. 0 I1 1 2 .i 1.4 -2 .1

PRIfABEf BY 8 KANYA AND D. WIEENGA X/R

55



T 32.0

30.0

29.0

2 .0 --VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 KY

S 26.0
0-I DISTURBANCE .6401 2,N
2L.O 'X/R L .. I NI N

240UNT HYPERB rLA L.ICM ItiN
23,0 ETA, l.b

22 .0

21.0

20.0 .

.0.n

.17.0

.11r

13.0

1. 2.0

11

10.01

qn3.0

L. O2.0

' I T

2. 03 o . . 0. 1. 1 1 . . 1 1

SPREP1R I) .3 KANY AND W.,.RENGA X/

56



31. 0

30.r

29. 'ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

27.0 KEy

2. DIS URBANCE .L4M .251N
I X/R - 1 :.1 =I 3,j.N

2K.4,0 I UN!T HYPERFjA ,l0CM = ..1lIN
23,Q ETA 1. -

22.0

21.0

20.0

.l.r,.

.17.0

15.0

13.0

12.0

2i. C

1.0

7.0

b.0 

0.0

3,0

2.0

2.0 1.2 0.3 0.1 01. 0 L 0. Y 0' O. 1 1.0 1.1 .12 1.3 1 .' 1 .L .1 .1 .i..

. PR.PADRED 9Y S. KANYA AND D. W1 FENA X/rf

57



.1.0

30.0

29

. r: ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
27.0 y

2.0 1 DISTUR.ANCEF 140 2, !'N
I X /R . (1 - 2.1N

2L1 J1 UNIT HWEROLA - i1CM 2 ILIN
2.0 ETA 2.0

22.0

21.0

20 .0

i9, o

.1., 0

13,0

.12.0 _
11.0

0.,0
1.3

-In
2. 3 3 .3 OL 0 3 b 0.7 0...... 0" 1. ' l 3 , IL . 7 . ,I

3.0

-.0 -i P E.A BY' - KANYA AND 0 U RENGA X/R "

58



.30

92. ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

2;0 E I

I .11 TN

2L0

1 UNIT !i'fRB LA -!40M -. N

S 2.0 ETA= 2.2

22.0;

21.0

20.0

17.0

lb.0

13.0

.12.0 C

.11, 0

1 ..0

1.4 0

3.0

7.0

o. I 7 7 7- 1 7I 1 7 7-
2.0

S 1 0.3 o 0 0L 0.7 G F .1.0 .. 1 . - .1. .L .7 .. ..
.3.0

.,.C. P4ERED BY .KANYA AND O. LJIJE IGA X./R

59



I 2.0

31.0

30.0

2.0 VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
270 KEy

2-.0 20
25.0 1 DIS1TU1ANCE. .6hlM .25IN

I X/PR - B.M = 3.SIN
12h,40 I UNIT HYPEPL.A - .CM -- .1bJN

23.0 ETA 2.

22.0

21.0

20.0

1G.0
17.0

16 0

16.0
3.0

2.0

.0

0.0

i- I

.0 __ 'PA[l l ~' ' K IANYA AN: S. WiA-: PNGA X -

60



31.0

30.0

VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

2b.O26.0
., I DISTUP-ANCE . - .25IN

I X/R - .Ri1M1 3.51N
4 UNIT WrPEPCLA - .+ICM = .blN

23. 0 _ ETA- 2.b

22 0

21.0

20.0

18. In

17.0

16.0

13.0

0.0

12.0

1.0

0.0

-2.0 _ 1 I 0.2 1~1 0.. 0.~ 0.. 1 G.F 0.1 1.0 1.1 1.2 1.3 1. 1.5 Lb 1. I.

--3.0
4. ] PRPAPLD G'Y S. KANYA AND D. W IEPENGA X/P

-5.61

61



32. 0

31.0

VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
27.0 _ KEY

6.0
I DISTURANCE .6401 .- 51N
I X/R B.qM _.5IN
I UNIT f FWPERELA A .lICM =W .blN

23.0 ETA 2.8

26.0

1i.0

17 U

13.0

0 .11

3.0

.0
-1.0 __ i ii  "

.. .Al.' L.D BY S. KANYA ANP P. I I.. A

62



32.

31.0

30.0

0n V/ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER
70 27

25, C1 DISTU ANC .b4 - .25IN
I X/R - .RqM 3.51N
1 UNIT TIPEROCLA - .lICM .IN

23.0 ETA 3.0

22.0

21.0

P.o
18 .0

1A 0

1b.0

15.0

14.0

13.0

12.0

10.0

SPHOND FT S. !ANYA AND D. W-ERENUA M.,

5.0

63.

63



31.0

30.0

VELOCITY DISTRIBUTION iN THE BOUNDARY LAYER ON A CIRCULAR CYLINDER

7.E0 Y y

25.0 1. DISTUPANCE -. b 1 .~2IN
1 X/P, . M : .IN
- UNIT WHPEP ELA -: .ICM 1 bIN

f3.0 TA-: .2

20.0

1.07 0

Ib.O

.15.0

12.0

11.0

A.n

1.0

4.06

3.0

0.0

o_ "11- Tr71-- TTITI I T i
.0 . p1. 0 . 0 O 0 O. O. 0 Q 1.0 1. 1 .2 1. 3 .1 1 .b 1. r 4 R .. !
,3.0

'4.0 .j PRFZ PAD BY S KANYA AND D. WIEIJNGA X/R

5.0J

64



32.0
31.0

30.0

-VELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCULAR CYLI

27. 1 nKEY
2b.0
,!5.0 _ DISTURBANLc-E .4i a .251N

I X/R-E 891 3.5IN
I UNIT HFPERPOLA .1LCM .. b61N

3.0 ETA- 3. 4
:2.0

19.0

18.0
10. 0

16.0

15.0

14.0

13.0

12.0

1.0

4.0

13.0

12.0

-4O

2.0 ( 0 .2 . 05 0.0. 0. O. 0.8 O. 1.0 1.1 1." 1.3 .. I 1.5 1.b 1.7 1I.8 1.Rq O
-3.0

PFEPARED BY S. KANYA AND D. WIEPENGA X/P

65.0

65



99

U/X V9NIU-J1M *J GNV Vk~Vi k U 0Idvxfjlnd L

G' blT UJT L'T TT Y T W'T iT YT VT O*T b'O U 0 1 0 9 0 LT i'o0V C 1

L1L--L LL-IL L
ITO

0,

C'Tl

O CT

O'T

0 LT

OUT

0*

0 Li

o UT



32.0

31.0

30.0

28.0 /ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIRCU

T7.0 - fEY
2b.0
25.0 1 DISITU~ANCE ..b4 = .25IN

I X/R = 8.9CM - -. SIN
1 UNIT [NPEROLA .61CM .IblN

23.0 - ETA 3.8-

20.0

10.0
IB.0

1b.0

15.0

13.0
11.0

10.0
8.0

0.0

4.0 -

-. 0 .. .1, 0.2 0.3 0.6 0.5 0.b 0.) 0.8 0.q 1.0 1.1 1.2 1.3 1.4 1.5 1.b6 1. 1.8 I. 2.0q
-3.0

-4.0 PPEPAPED BY S. KANYA AND D. IFPENGA X/RP

67



S31.0

30.0

2q.0
, ELOCITY DISTRIBUTION IN THE BOUNDARY LAYER ON A CIR8.0

27.0 KEY

2b.0
> - I DISTURBANCE = .b4LM1 .25IN

I X/P, -FB.M = .51N
1 UNIT fPEPBLA - .6lCM - ..bIN

23.0 ETA, .0

20.0

17.0 •

16.0

15.0

11.0 -
10 0
1.0

B.0

O

b.0

4.0

3.0

. ... I I' IPAPLD 'Y . KANYA AND D. WIERVLNU A X,,!

68



The Third Set of Plots

-1
The function (v d + disturbance), vd = v U , as the function of

(x R- ) for various values of the parameter il = 0. 2, 0. 4,
-l

4. 0. The function vd = v U.l is dimensionless, the disturbance,

equal to wz , is superimposed upon the dimensionless velocity

function, vd = v U 1 . Time is frozen.
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APPENDIX

1. OTHER POSSIBLE FORMS

Wentzel (see References) cites the Schroedinger-Gordon wave

equation, which has the form:

(0 - ) (x,t) = 0, (1. 1)

4
[] 0/8x2 - 2/t z,  (1.2)

/ a /2 V2  - 1c a2 /a tZ

v-i

where

v= 1, 2, 3, 4, (1.3)

Xl, x 2 , x 3 = space coordinates, (1.4)

x 4 = ict , (1.5)

it is known that the Broglie complex wave functions

exp { i (k x + [ 2 +k 2 c t 1/2} (1.6)

are particular solutions of the wave equation, (1. 1). The scalar con-
-1

stant, ph c -1, represents the rest mass of the respective particles.

It turns out, indeed, that the stationary states of quantized fields

obeying the field equations, (1. 1), represent systems of particles with

-1
the rest mass -hc (Wentzel, p. 22).

As is known, the association between quantum mechanics and

macroscopic hydrodynamics in the classical sense was proposed by

Irving Madelung in 1926. Exactly in the same year, Schroedinger

announced his famous wave mechanics equation under the name of

"amplitude equation." Madelung applies the "amplitude equation" of

Schroedinger to the derivation of the equations of motion of the hydro -

dynamic medium in the classical sense; the conditions and restrictions

superimposed upon the Schroedinger equation and next superimposed

by Madelung upon the hydrodynamic system in question and the manners

of overcoming these difficulties are of the following nature:

(a) The macroscopic hydrodynamic system in question when
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moving in one direction should be free from the action of

the curl. Of course one can use another system for the

curl separately and add the results.

(b) The Schroedinger equation refers to the amplitude and

wave phenomena of one, single electron only. To use it

in the sense of the macroscopic fluid dynamics, one has to

propose some sort of generalization of the Schroedinger

equation to a group or cluster of elements or molecules.

Three such possible cases referring to the three possible

groups of elements, h, m, were discussed in the present

research.

In that respect, the writer repeats the principles of the method from

Methods of Quantum Field Theory in Statistical Physics, by A. A.

Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Institute for

Physical Problems, Academy of Sciences, U.S.S.R., revised English

edition, translated and edited by Richard A. Silverman:

"In recent years, remarkable success has been achieved in
statistical physics, due to the extensive use of methods
borrowed from quantum field theory. The fruitfulness of
these methods is associated with a new formulation of
perturbation theory, primarily with the application of
'Feynman diagrams.' The basic advantages of the diagram
technique lies in its intuitive character: Operating with
one-particle concepts, we can use the technique to determine
the structure of any approximation, and we can then write
down the required expressions with the aid of correspondence
rules. These new methods make it possible not only to solve
a large number of problems which did not yield to the old
formulation of the theory, but also to obtain many new re-
lations of a general character. At present, these are the
most powerful and effective methods available in quantum
statistics.

There now exists an extensive and very scattered journal
literature devoted to the formulation of field theory methods
in quantum statistics and their application to specific problems.
However, familiarity with these methods is not widespread
among scientists working in statistical physics. Therefore,
in our opinion, the time has come to present a connected
account of this subject, which is both sufficiently complete
and accessible to the general reader."

The present writer uses Feynman's (Nobel Prize) exact technique with

the correspondence rules properly adjusted to the macroscopic fluid

dynamics in two dimensions. The three-dimensional problems are not

attacked, as yet, and have to be attacked in the future.

92



2. HEISENBERG OPERATORS

2. 1. Preliminary Remarks

There exists another formalism in attacking the problems in the

field of quantum mechanics, i. e. , Heisenberg operators. This technique

is not used for the time being in the present report and for this reason it

will be only briefly mentioned here. May be in the future the writer may

propose a method of application of Heisenberg operators to the problem

which is under discussion in the present report.

2. 2. Remarks on Operators

Suppose that the function f(x) has a power series expansion:

2 3
f(x) = fo + x f + X f2 + xf + . .. ; (2. 2. 1)

then, we can define the operator f(A) by:

f (A) = f + A f + Af + A3f + ... ; (2. 2. 2)

for example, the operator exp (XA) is:

exp (XA) = 1 + XA + X2(2! )-1A + X (31)-A3 + ... ; (2.2.3)

it may be convenient now to introduce the proper notation used in the

vector algebra:

a column vector is denoted by: I'> ;

a row vector is denoted by: <l ;

examples:

column vector:

I s >; (2.2.4)

a row vector:

Sy (2.2. 5)

where * stands for complex conjugate; the scalar product of a row

vector <D I and a column vector 19 > is equal to:
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+ < > < ; (2. z. 6)

if 4 > has unit length then:

I l , 2 y = 12 (2. 2. 7)

this is called the normalization condition. As an example consider the

following case: all beams of light are superpositions of many

beams consisting of one photon each, one may turn his attention to the

polarization properties of single photons. It is relatively easy to

discover the probability rules for one photon from the knowledge of the

behavior of classical beams. The general laws of quantum mechanics

are just generalizations of these rules. For one photon one has (Baym,

p. 3):

IE' Z V = 8 T Ir, ; (2.2. 8)

where:
-P -- 3

E = E(r, t) = electric field vector;

V = volume;
-I

- = h(2r)

w = the angular frequency.

One defines the "state vector" of the photon polarization by:

I > = , (2. 2. 9)

and by writing:

x= [V(8 r4w)- 1]/2 E x (2.2. 10)

S= [V(8T4r) ]/2 E ; (2.2. 11)
Y y

the I- > vectors are vectors in a "complex" two-dimensional space,

their components being complex numbers. From Equation (2. 2. 7) it

follows that I' > has unit length and:

1 4 12 + I yl = 1 . (2. 2. 12)
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In fact the state vectors are independent of the volume V and depend only

on the state of polarization of the photon. For example, if:

exp (i a)
, > = 1 e x p (i a )  (2. 2. 13)

F2 \exp (i )

then the photon is polarized at 450 to the x-axis. A knowledge of the

T > vector gives us all the information we can obtain about the state

of the polarization of the photon.

Some special examples of similar vectors are:

x> = : x-polarization; (2. 2. 14)

S = () : y-polarization ; (2. 2. 15)

R> -1 ( ; right circular polarization; (2. 2. 16)

L> ; left circular polarization. (2.2. 17)

Let us associate with each column vector I > a row vector < T I

which is defined by:

< =  (x ) , (2.2. 18)

where * stands for complex conjugate. We may define some operations

like the scalar product (discussed already above): scalar product of a

row vector- < I and a column vector I ' > :

x (> xx + y + Py <'1I @ > ; (2.2.19)

the known normalization condition requires for the vector I >:

<T I > = 1; (2.2.20)

clearly:

<x Ix> = <yy> = 1 ; (2.2. 21)
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<RJR> = <LIL> = 1; (2. 2. Z2)

the vectors Ix > and y > are orthogonal, i. e. , perpendicular, in the

sense that:

<xl Y> = 0. (2. 2. 23)

The vectors Ix> and Iy> form a basis, since any 1,> vector can be

written as a linear superposition of them:

I-> = ( = x > + LyY> ;(2. 2 24)

they are orthogonal, they satisfy the normalization condition, and they

form the "orthonormal" basis. Similarly, the set I R> and IL>

form an orthonormal basis, since we can always write:

> x x- i Y y R> + x -y L>. (2. 2. 25)

y] N2 42

We can regard any arbitrary polarization as a coherent (logically

consistent) superposition of x and y polarization states, or equivalently

as a coherent superposition of right and left circularly polarization states.

Let us return to the problem of passing a beam through an x-polaroid.

The classical rules tell us to regard the beam as a superposition of an

x-polarized beam and a y-polarized beam, and that the effect of a

polaroid is to throw away the y-polarized component and pass only the

x-polarized component. The absolute value squared of the amplitude

of the beam gives us its energy before it passes through, and the

absolute value squared of its x-component give us its energy after it

passes through. The fraction of the beam that passes through is given

by equation:

ExI 2 []Ex 12 + [E 0 1 = E 2
x 2+ I2 - 1 ; (2.2. 26)

as we know, quantum mechanically the fraction (2. 2. 26) gives us the

probability of one photon with the initial polarization passing through the

polaroid. Written in terms of Ij > , Eq. (2. 2. 26) is the "probability":
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probability = lxl2 [ 12 + Iy - 1  I f<x = I < x l > I 2 . (2. 2. 27)

Thus <x Ix > is the amplitude of the x-polarized component of I T> ,

and its absolute value squared is the probability that the photon in the

state I > passes through the x-polaroid. We call <x IT > the

"probability amplitude" for the photon to pass through the x-polarizer.

Next, consider passing light through a prism that passes right

circular light but rejects left circular light. To calculate the probability,

we write the beam as a coherent sum of right circularly polarized and

left circularly polarized light, in terms of the state vectors. Then

<RI > is the amplitude of the component passed through the prism and

I<R I> 12 is the probability that a photon in the state I' > will pass

through the prism that passes only the right circular polarized light.

Thus the general rule is that if we have a prism that passes only light

in the state ID > , rejecting light in states orthogonal to [e> , then the

probability amplitude that a photon in the state [q> will pass through

the prism is:

, (2. 2. 28)

and the probability that the photon passes through is:

I<.)I >12 •(2. 2. 29)

Notice that the probability is independent of the phase of IT > or 1, >

2. 3. Equations

Above, we defined the operator f(A) as:

f(A) = f 0 + A f + A +Af + ... (. 3. 1)

An application of an operator (2. 3. 1) to any "state vector, " Equation

(2. 2. 9), say, causes a transformation of this vector. The operator,

composed of the right and left circular polarizations, is usually denoted

by the symbol R(O). In general, if we transform a vector 1I> by R(e),

the new components of IT > will bear little resemblance to the old

components. Let us ask if there are any state vectors that when

operated upon by R(9) are at most multiplied by a constant:
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R(0E)j> = C ],> . (2. 3.2)

If a vector satisfies a relation like this it is called an "eigenvector" of

R(e), and the number C is called the "eigenvalue" of R(O) belonging to

the eigenvector in question. Analogously, one can talk about the "eigen-

states" of an operator. If Ia> is an eigenstate of f(A), Equation (2. 3. 1),

with eigenvalue a, then operating on la> with f(A), one gets:

f(A) Ia> = (f 0 
+ A fl + AZf2 + A3f3 +. . )Ia >

= (f + af + af 3 f3 + ... ) a >

Sf(a)Ia> . (2. 3. 3)

The above operation emphasizes clearly that la> is an eigenstate of the

operator f(A) with an eigenvalue f(a). The eigenstates of an operator A

form the so-called "complete" set of eigenstates of A; one of the conditions,

to be satisfied by the set in question is the following one:

1 = IIa ><aI; (2. 3.4)

the eigenstates of A can always be chosen so that a complete set of A,

they form is Hermitian. Operating on both sides of Equation (2. 3. 4) with

f(A) one finds from Equation (2. 3. 4):

f (A) = f(a)Ia><aI (2. 3. 5)

In fact, one could take this (i. e. , Equation (2. 3. 5)) as the equation

defining f(A) in terms of the eigenstates of A; it is not necessary for "f"

to have a power series expansion to be a usable definition. For illustrative

purposes, one can define a delta function of an operator, 6(A-x), by:

6(A-x) = 1 (a-x) a> <a, (2.3.6)

where x is number (Baym, p. 135).

To complete the explanations of the notation, the writer puts down

a few more notations used in the text below. Let the letter "I" denote
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the length in the z direction, say, on which length some changes in the

states of a phenomenon may occur. Let the incident state in a phenomenon

in question be denoted by the symbol given below:

incident state = le > ; (2. 3. 7)

the distance I changes the incident state le> into the state:

le > - exp (i kel )le> ; (2. 3. 8)

where:

k = wave number; (~ cm- );
e

example in the electric field:

Ex(r t) = Ex cos (k z - wt + ax ) ; (2. 3.9)

E (r, t) = Eo cos (k z - tt + a ) ; (2. 3. 10)
y y y

k = 2w - 1 = wave number; -(cm- );
-l

w = angular frequency ; (- sec 1;

period of a vibratory motion = time required for a complete vibration;

frequency = number of.complete vibrations, or cycles, in a unit of time;

the frequency is numerically equal to the reciprocal of the period;

X = wave length of the harmonic wave = distance between successive

points at which the wave differs in phase by 21T, or the distance between

maximum displacements or crests; a x , ay = the phases; phase is a

term stating where the body is at any instant in its vibrations, and what

its direction of motion is; the wave numbers with subscripts denote:

k = n c ; ( cm-); (2. 3. 11)
e e

- -

k n c ; ( cm ); (2. 3. 12)

where n e , n o , are integers. The wave numbers often do not have any

special names.

If the phenomenon in question takes place on the length "'I", then

the difference in phase of an "e wave" between its point of entry and its

point of departure will be "k ". Similarly, an "O wave" changes phase

by "k01". The time factor exp(- iwt) is the same for both states (of
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polarization, say) and does not effect their relative phase. In Equation

(2. 3. 8) the incident state le> is changed on the distance I; this implies

that (as mentioned already in Equation (2. 3. 8)):

e > - exp (i kel )le > ; (2. 3. 13)

as it is seen, the function, which introduces (causes) the changes in the

states is assumed to be in the form of the exponential function, exp (i k )e

Similarly, and incident 10> state changes into

10 > - exp (i k 1)10 > ; (2.3. 14)

the state 0 > is associated with the wave number ko , i. e.,:

-1
state 10 > ; wave number k 0 = n0 c ; (2.3. 15)

let us define the wave number "matrix" by:

K= ke le> <el+ kOIO><Ol (2. 3. 16)

The Hermitian adjoint, K + , of the matrix K, Equation (2. 3. 16), is the

matrix:

<x K Ix> <y K x>

K = . (2. 3. 17)
<xIKly> <ylKly>

It may happen that in some cases (see Baym, p. 33):

K = K ; (2. 3. 18)

K is then said to be Hermitian.

As an application of operator functions, one may cite the following

example and result:

Suppose that IT(0) > is the state of a system at time t = 0; then

at another time t, the state of the system is given by the equation:

IP(t) > exp (- i Et - )IE > < EI(0)> , (2. 3. 19)

E

where the sum is over a complete set of energy eigenstates of the Hamiltonian,

H, of the system.
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The row vector <f(t) is given in terms of <P(O) I by:

< (t) = <T(0) (exp(i Ht 4-- ))

<T(0)I exp (i Ht - 1) , (2.3. 20)

where the hermiticity of H is used (see Baym, p. 136). Using Equation

(2. 3. 5), Equation (2. 3. 19) is simply:

Is(t)> = exp (- iHtr - 1) q'(0)> ; (2. 3.21)

equations (2. 3. 19) and (2. 3. 21) are only valid if H does not explicitly

depend on time (Baym, p. 135). The expression IT(t)> in this form

clearly solves the Schroedinger equation:

ih a (t)> = H l(t)> . (2. 3. 22)

2. 4. Heisenberg Representation

On may be often interested in knowing how expectation values of

operators, in the state WI(t)> , change in course of time. If A is an

operator, then its expectation value at time t is:

< A> t = < '(t) IA F(t)> (2. 4. 1)

Assume A not to depend on time explicitly. Using Equation (2. 3. 20) and

(2. 3. 21) one gets:

<A>t = <P(0) lex p (i Ht- 1) A exp(+i Ht4Y 1 IK(O)> ; (2.4. 2)

if we define a time-dependent operator A(t) by:

A(t) = exp (i Ht -h- 1) A exp (- i Ht -r- 1) , (2. 4. 3)

then we can also write:

< A> t = <,(0) A(t) I(0) > . (2.4. 4)

In this equation one can regard the time development of <A> t as occurring

because the operator changes in time, while the state remains the same at all
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times. This way of regarding the time development of the system is called

the "Heisenberg representation" or "Heisenberg picture." The other

way of looking at the time development, as in Equation .( 2. 3.22 ), where

the operators remain constant in time, but the states change according to

Equation ( 2. 3.22 ), is called the "Schroedinger representation" (or

picture). At t = 0, the states and operators are the same in both repre-

sentations. Both representations give the same results for time dependent

expectation values. We can solve for either the time dependence of the

states in the Schroedinger representation, or for the time dependence of

the operators in the Heisenberg representation.

In the present report the writer applies the Schroedinger represen-

tation to the problem proposed and outlined by Madelung, i.e., the

association between the quantum mechanics and macroscopic hydro-

dynamics.
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